

DAMHUB8N 说明书

V1.0

北京聚英翱翔电子有限责任公司 2019 年 05 月

目 录

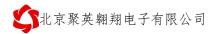
_,	产品特点			1
_,	产品功能			1
三,	产品选型			1
四、	主要参数			1
五、	接口说明			1
六、	通讯接线说明			2
	1、RS485 级联接线方式			2
	2、RS232 接线连接方式			2
七、	输入输出接线			3
	1、继电器接线说明			3
	2、有源开关量接线示意图	错误!	未定义书签	÷ 0
	3、无源开关量接线示意图	错误!	未定义书签	<u>.</u>
八、	测试软件说明			4
	1、软件下载			4
	2、软件界面			5
	3、通讯测试			5
九、	参数及工作模式配置			6
	1、设备地址			6
	2、工作模式			8
	3、闪开闪断功能及设置	错误!	未定义书签	E 0
十、	开发资料说明			8
	1、通讯协议说明			8
	2、Modbus 寄存器说明			8
	3、指令生成说明			. 10
	4、指令列表			. 10
	5、指令详解			11
+-	一、常见问题与解决方法			. 13
+=	二、技术支持联系方式			. 13

一、产品特点

- DC7-30V;
- 继电器输出触点隔离;
- 通讯接口支持 RS485 或 RS232, 网口, WiFi;
- 通信波特率: 2400,4800,9600,19200,38400 (可以通过软件修改,默认 9600);
- 通信协议: 支持标准 modbus RTU 协议;
- 可以设置 0-255 个设备地址,可以通过软件设置;
- 八路远程控制电脑开关机并检测状态

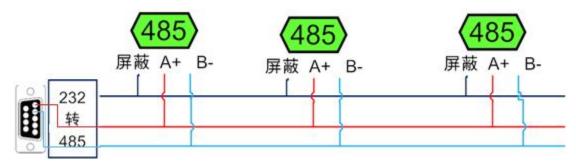
二、产品功能

- 八路继电器控制输出;
- 八路开机状态采集输入(5-24V);

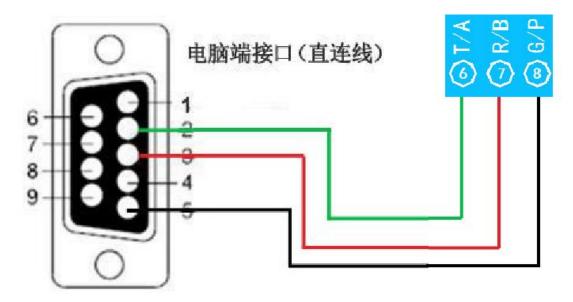

三、产品选型

型号	modbus	RS232	RS485	USB	WiFi	继电器	开机输入
DAM0800-RS232/485	•	•	•			8	8

四、主要参数


参数	说明			
触点容量	10A/30VDC 10A/250VAC			
耐久性	10万次			
数据接口	RS232、RS485			
额定电压	DC 7-30V			
电源指示	1路红色 LED 指示			
输出指示	8路网口绿色 LED 指示			
输入指示	8路网口黄色 LED 指示			
温度范围	工业级, -40℃~85℃			
尺寸	145*94*41mm			
重量	160g			
默认通讯格式	9600, n, 8, 1			
波特率	2400,4800,9600,19200,38400			
软件支持	配套配置软件、控制软件; 支持各家组态软件; 支持 Labviewd 等			

五、接口说明


六、通讯接线说明

1、RS485级联接线方式

电脑自带的串口一般是 RS232,需要配 232-485 转换器(工业环境建议使用有源带隔离的转换器),转换后 RS485 为 A、B 两线,A 接板上 A 端子,B 接板上 B 端子,485 屏蔽可以接 GND。若设备比较多建议采用双绞屏蔽线,采用链型网络结构。

2、RS232 接线连接方式

七、输入输出接线

1、开关机子板接线说明

接线图示

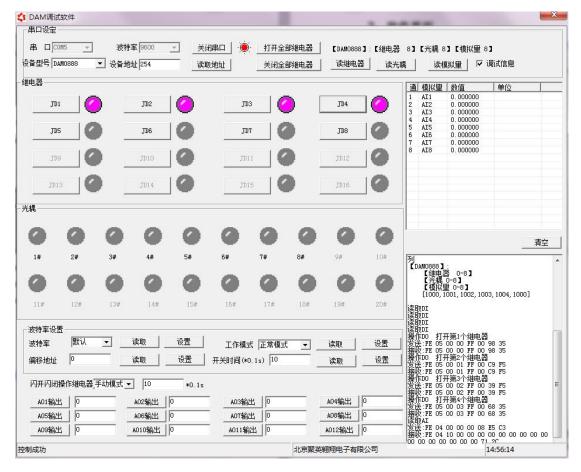
八、工作描述

设备上的八个网口通过网线接八个开关的子板。子板上有继电器输出的干接点(板上印着 "开机"的接线柱),连接到电脑的开机按键上;子板上的检测输入是接在电脑的 12V 或者 5V 的电源输出接口上,负责检测电脑的开机状态。

例如:第一路的子板上的继电器接在电脑的开机按键上,板上的检测输入接在电脑的 12V 电源输出接口上。

- (1) 当电脑为关机状态时,发送第一路继电器打开指令(FE 05 00 00 FF 00 98 35),则继电器点动 0.5S,电脑开机。开机后发送开关量状态查询指令(FE 02 00 00 00 08 6D C3),返回指令(FE 02 01 01 50 5C) 证明开机成功。或者观察第一路网口的黄色指示灯是否亮,亮代表电脑开机,否则电脑关机。
- (2) 当电脑为开机状态时,发送第一路继电器关闭指令(FE 05 00 00 00 00 D9 C5),则继电器点动 0.5S,电脑关机。关机后发送开关量状态查询指令(FE 02 00 00 00 08 6D C3),返回指令(FE 02 01 00 91 9C) 证明关机成功。或者观察第一路网口的黄色指示灯是否亮,亮代表电脑开机,否则电脑关机。

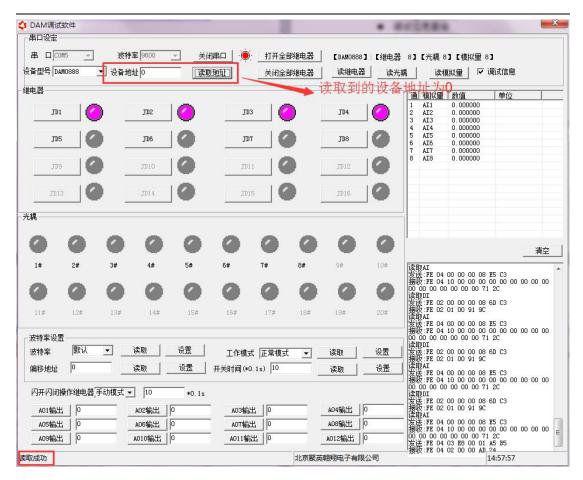
注:电脑为开机状态时,发送开机指令,继电器无动作;电脑为关机状态时,发送关机指令,继电器无动作。


八、测试软件说明

1、软件下载

软件下载链接地址**:** https://www.juyingele.com/download/DAMSoftware.zip

2、软件界面


软件功能:

- 继电器状态查询
- 继电器独立控制
- 开关量状态查询
- 调试信息查询

3、通讯测试

- ① 选择设备当前串口号,打开串口;
- ② 选择对应的产品型号;
- ③ 设备地址修改为 254,点击"读取地址",软件底部提示"读取成功",读到的设备地址为"0",软件右下方的发送和指令正确,则说明设备与电脑通讯成功。

九、参数及工作模式配置

1、设备地址

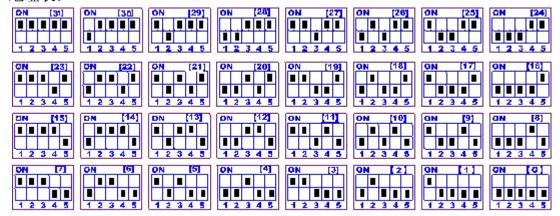
1.1、设备地址的介绍

 ${\sf DAM}$ 系列设备地址默认为 0,使用广播地址为 254 进行通讯, ${\it H0}$ 无法通讯。

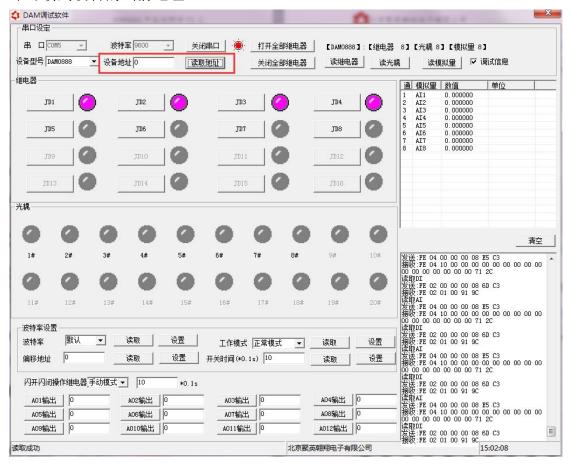
设备地址=拨码开关地址+偏移地址。

拨码开关地址: 是五位拨码开关地址。(范围 0~31)

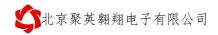
设备基地址:是指软件设置的地址,也叫偏移地址。


具体关系是: 设备地址=拨码开关地址+设备基地址(无拨码开关设备: 设备地址=设备基地址)。

- 1、五个拨码全都拨到"ON"位置时,为地址"31";
- 2、五个拨码全都拨到"OFF"位置时,为地址"0";
- 3、最左边1为二进制最低位。



4、地址表:


1.2、设备地址的读取

设备正常通讯后,初始设备地址写入 254,然后点击软件上方"读取地址"即可读到设备的当前地址。

1.3、偏移地址的设定与读取

点击 DAM 调试软件下方偏移地址后边的"读取"或"设置"来对设备的偏移地址进行读取或设置。

丹八闭操作	作继电器手刻	カ模式 ▼ 10	*0.1s	
A01输出	0	A02輸出	0	A03输出
A05输出	0	A06输出	0	A07输出
A09输出	0	— A010輸出	10	A011输出

1.4、波特率的读取与设置

点击下方波特率设置栏的"读取"和"设置"就可以分别读取和设置波特率和地址,操作后需要重启设备和修改电脑串口设置。

2、

十、开发资料说明

1、通讯协议说明

本产品支持标准 modbus 指令,有关详细的指令生成与解析方式,可根据本文中的寄存器表结合参考《MODBUS 协议中文版》 即可。

Modbus 协议中文版参考:

https://www.juyingele.com/download/Modbus_poll.zip 本产品支持 modbus RTU 格式。

2、Modbus 寄存器说明

本控制卡主要为线圈寄存器,主要支持以下指令码:1、5、15

指令码	含义
1	读线圈寄存器
5	写单个线圈

15 写多个线圈寄存器

线圈寄存器地址表:

寄存器名称		寄存器地址	说明
线圈控制			
线圈 1	写线圈	0x0001	第一路继电器输出
线圈 2	1号指令码	0x0002	第二路继电器输出
线圈 3		0x0003	第三路继电器输出
线圈 4		0x0004	第四路继电器输出
线圈 5		0x0005	第五路继电器输出
线圈 6		0x0006	第六路继电器输出
线圈 7		0x0007	第七路继电器输出
线圈 8		0x0008	第八路继电器输出
离散量输入			
输入1	开关量	1x0001	第一路电脑开机状态输入
输入 2	2号指令	1x0002	第二路电脑开机状态输入
输入3		1x0003	第三路电脑开机状态输入
输入4		1x0004	第四路电脑开机状态输入
输入 5		1x0005	第五路电脑开机状态输入
输入 6		1x0006	第六路电脑开机状态输入
输入 7		1x0007	第七路电脑开机状态输入
输入8		1x0008	第八路电脑开机状态输入
配置参数			
通信波特率	保持寄存器	4x1001	见下表波特率数值对应表,默认为0,
			支持 0-5, 该寄存器同时决定 RS232 和
			RS485 的通信波特率
备用		4x1002	备用,用户不可写入任何值。
偏移地址		4x1003	设备地址=偏移地址+拨码开关地址
工作模式		4x1004	用户可以使用,存储用户数据
延迟时间		4x1005	用户可以使用,存储用户数据

备注:

①: Modbus 设备指令支持下列 Modbus 地址:

00001 至 09999 是离散输出(线圈)

10001 至 19999 是离散输入(触点)

30001 至 39999 是输入寄存器(通常是模拟量输入)

40001 至 49999 是保持寄存器(通常存储设备配置信息)

采用 5 位码格式,第一个字符决定寄存器类型,其余 4 个字符代表地址。地址 1 从 0 开始,如 00001 对应 0000。

②: 波特率数值对应表

数值	波特率
0	9600
1	2400

2	4800
3	9600
4	19200
5	38400

③: 继电器状态,通过 30002 地址可以查询,也可以通过 00001---00002 地址来查询,但控制只能使用 00001---00002 地址。

寄存器地址按照 PLC 命名规则,真实地址为去掉最高位,然后减一。

3、指令生成说明

应用举例及其说明:本机地址除了拨码开关地址之外,还有默认的 254 为广播地址。当总线上只有一个设备时,无需关心拨码开关地址,直接使用 254 地址即可,当总线上有多个设备时通过拨码开关选择为不同地址,发送控制指令时通过地址区别。

注意: RS485 总线可以挂载多个设备。


指令可通过"聚英翱翔 DAM 调试软件",的调试信息来获取。

指令生成说明:对于下表中没有的指令,用户可以自己根据 modbus 协议生成,对于继电器线圈的读写,实际就是对 modbus 寄存器中的线圈寄存器的读写,上文中已经说明了继电器寄存器的地址,用户只需生成对寄存器操作的读写指令即可。例如读或者写继电器 1 的状态,实际上是对继电器 1 对应的线圈寄存器 0001 的读写操作。

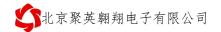
4、指令列表

情景	RTU 格式(16 进制发送)
查询八路状态	FE 01 00 00 00 08 29 C3

查询指令返回信息	FE 01 01 00 61 9C
控制第一路开	FE 05 00 00 FF 00 98 35
控制返回信息	FE 05 00 00 FF 00 98 35
控制第一路关	FE 05 00 00 00 00 D9 C5
控制返回信息	FE 05 00 00 00 00 D9 C5
控制第二路开	FE 05 00 01 FF 00 C9 F5
控制第二路关	FE 05 00 01 00 00 88 05
控制第三路开	FE 05 00 02 FF 00 39 F5
控制第三路关	FE 05 00 02 00 00 78 05
控制第四路开	FE 05 00 03 FF 00 68 35
控制第四路关	FE 05 00 03 00 00 29 C5
控制第五路开	FE 05 00 04 FF 00 D9 F4
控制第五路关	FE 05 00 04 00 00 98 04
控制第六路开	FE 05 00 05 FF 00 88 34
控制第六路关	FE 05 00 05 00 00 C9 C4
控制第七路开	FE 05 00 06 FF 00 78 34
控制第七路关	FE 05 00 06 00 00 39 C4
控制第八路开	FE 05 00 07 FF 00 29 F4
控制第八路关	FE 05 00 07 00 00 68 04
查询八路光耦状态	FE 02 00 00 00 08 6D C3
查询返回信息	FE 02 01 00 91 9C

5、指令详解

5.1、继电器输出


控制 1 路继电器(以第一路开为例,其他通道参照本例) 发送码: FE 05 00 00 FF 00 98 35

字段	含义	备注
FE	设备地址	这里为广播地址
05	05 指令	单个控制指令
00 00	地址	要控制继电器寄存器地址
FF 00	指令	继电器开的动作
98 35	CRC16	前 6 字节数据的 CRC16 校验和

继电器卡返回信息:

返回码: FE 05 00 00 FF 00 98 35

字段	含义	备注
FE	设备地址	这里为广播地址
05	05 指令	单个控制指令
00 00	地址	要控制继电器寄存器地址
FF 00	指令	继电器开的动作
98 35	CRC16	前 6 字节数据的 CRC16 校验和

5.3、电脑开机状态输入

查询电脑开机状态

发送码: FE 02 00 00 00 08 6D C3

字段	含义	备注
FE	设备地址	
02	02 指令	查询离散量输入(光耦输入)状态指令
00 00	起始地址	要查询的第一个光耦的寄存器地址
00 08	查询数量	要查询的光耦状态数量
6D C3	CRC16	

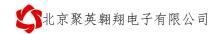
光耦返回信息:

返回码: FE 02 01 01 50 5C

字段	含义	备注
FE	设备地址	
02	02 指令	返回指令:如果查询错误,返回 0x82
01	字节数	返回状态信息的所有字节数。1+(n-1)/8
01	查询的状态	返回的继电器状态。
		Bit0:第一个光耦输入状态
		Bit1:第二个光耦输入状态
		0 0 0 0 0 0
		Bit7:第八个光耦输入状态
50 5C	CRC16	

5.5、全开全关指令

全开全关指令解析


全开发送码: FE OF OO OO OO O8 O1 FF F1 D1

全断发送码: FE OF OO OO OO O8 O1 OO B1 91

其中FF 为全开全关指令,为二进制转换为16进制,2进制中1代表吸合,0代表断开,11111111为全开,00000000 为全断,每8路为一个字节,起始为右侧开始,如2,4,6,8,通道打开,其他关闭,则2,4,6,8为10101010,16进制为AA,全部开关指令为AA

	=				
字段	含义	备注			
FE	设备地址				
0F	0F 指令	返回指令:如果查询错误,返回 0x82			
00 00	起始地址				
00 08	控制数量	控制的继电器数量			
01	字节数	发送命令字节数			
FF (或 00)	全开全关命令	FF 全开命令 00 全关命令			
F1 D1 (或B1 91)	CRC16	校验位			

全开返回码: FE OF OO OO OO OA C1 C3 全断返回码: FE OF OO OO OO O8 40 O2

字段	含义	备注
FE	设备地址	
0F	0F 指令	返回指令:如果查询错误,返回 0x82
00 00	起始地址	
00 08	数量	返回信息的继电器数量
40 02	CRC16	校验位

十一、常见问题与解决方法

1、232 通讯,设备控制无响应,不动作

设备与上位机进行通信使用的是 232 直连线。即 RX 对 RX, TX 对 TX, GND 对 GND

2、继电器只能开不能关

读取地址是否读到的是实际设备地址,调试信息栏内是否有返回指令,返回指令是否正确,如果读取地址失败,没有返回指令或返回指令异常,检查通讯线和通讯转换器

3、485 总线上挂有多个设备时,每个设备地址不能一样, 不能使用广播地址 254 来进行通讯。

广播地址在总线上只有一个设备时可以使用,大于1个设备时请以拨码开关区分地址来 控制,否则会因为模块在通信数据的判断不同步上导致指令无法正确执行。

十二、技术支持联系方式

联系电话: 4008128121、010-82899827/1-803

联系 QQ: 4008128121